Calcium looping technology and **CLEANKER** targets

Calcium looping is a regenerative process, which takes advantage of the capacity of calcium oxide-based sorbents to capture CO₂ at high temperatures.

The process is divided in two basic steps: (1) the capture of CO₂ by "carbonation" of CaO to form CaCO₃ in a reactor operating around 650°C; and (2) oxyfuel calcination in a reactor operating above 900-920°C, which makes the CaO available again and releases a gas stream of nearly pure CO₂.

Integration of the Demonstrator within the kiln of the existing cement plant Vernasca / Italy

Objective	Key indexes	Target
CO ₂ emissions	CO ₂ capture efficiency CO ₂ specific emissions	Cement plant CO ₂ capture efficiency > 90%
		Negative direct CO ₂ emissions by biomass co-firing (Bio-CCS)
Economics	Cost of cement Cost of CO ₂ avoided	Increase of cement cost < 25 euro/t _{cement}
		Cost of CO ₂ avoided < 30 euro/tco ₂

Contact

Project Coordinator

LEAP s.c.a r.l. Via Nino Bixio 27/c_29121 / Piacenza cleanker-leap@polimi.it

Main Contact Martina Fantini martina.fantini@polimi.it +39 0523 35 6881

Visit our website: www.cleanker.eu

and follow us on the main social network: You Tube fin

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764816

CLEAN CLINKER PRODUCTION BY CALCIUM LOOPING PROCESS

MAIN FEATURES

EU-funded project within the Horizon 2020 framework

Starting date: October 1st 2017. 4 year lifetime

Consortium: 13 from 5 EU member states + Switzerland and China

Budget: 9.237.851 €

EC contribution: 8.972.201 €

Chinese government funding: 265.650 €

13 Partners in **5** EU member states + Switzerland and China

CLEANKER PROJECT

University of Stuttgart Induction and Tower Var Technology LUT Lappcarranta University of Technology Tall INN UNIVERSITY OF IECHNOLOGY Buzzi Unicem POLITECNICO MILANO 1863 Italcementi Innounaemocio Anthirosay Laboratorio Energia e Ambiente Piacenza

RESEARCH CENTRES:

LEAP / Italy

CSIC / Spain

VDZ / Germany

REPRESENTATIVES FROM THE ACADEMIA:

Politecnico di Milano / Italy

Tallinn University of Technology / Estonia

Lappeenranta University of Technology / Finland

University of Stuttgart / Germany _ and Tsinghua University / China

SMALL AND MEDIUM-SIZED ENTERPRISE (SME):

Quantis / Switzerland

TECHNOLOGY PROVIDER:

IKN / Germany

END USERS:

Buzzi Unicem / Italy

Italcementi Heidelberg Group / Italy

ENVIRONMENTAL ORGANIZATION:

Amici della Terra / Italy

BACKGROUND

The cement industry can play a key role in the reduction of CO_2 emissions. CO_2 generation in the cement production is mainly related to the calcination of limestone (CaCO $_3$ dissociated to CaO and CO_2), the main raw material used in the production process. Around 60% of CO_2 emissions come from this process reaction.

In addition, fossil fuels combustion emissions are relevant as well; also, on top of direct CO₂ emissions, the generation of electric power required by the process (e.g. grinding) is responsible for indirect CO₂ emissions.

STATE OF THE ART

There are currently no feasible methods to produce clinker, and thus cement, without releasing CO_2 from $CaCO_3$, and, given the lifetime of a cement plant (30-50 years), the technologies to be developed will have to be retrofits.

In addition to **oxyfuel combustion** and **post-combustion solvent-based** capture technologies, which so far attracted most of the research efforts, **Calcium Looping** is recognized as another very promising emerging technology for CO_2 capture.

CLEANKER focus

The ultimate objective of CLEANKER is demonstrating the applicability of the Calcium Looping (CaL) to the cement production process, with the usage of entrained flow reactors. A complete demonstration system will be installed by the 1300kton/year cement plant, operated by Buzzi Unicem, in Vernasca (Piacenza, Italy).

From limestone to clinker - current situation

From limestone to clinker - CaL application

